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Abstract. Processes for system failure analysis (e.g., FMEA) are structured, well-documented, 
and supported by tools. Nevertheless, we hear complaints that FMEA work feels (1) too labor 
intensive to encourage engagement, (2) somewhat arbitrary in identifying issues, (3) overly 
sensitive to the skills and background of the performing team, and (4) not building enough 
confidence of fully identifying the risks of system failure. In fairness to experts in the process, 
perhaps such complaints come from those less experienced—but even so, we should care how to 
describe this process to encourage better technical and experience outcomes. This paper shows 
how Model-Based Systems Engineering (MBSE) answers these challenges by deeper and novel 
integration with requirements and design. Just as MBSE powered the requirements discovery 
process past its earlier, more subjective performance, so also can MBSE accelerate understanding 
and performance of failure risk analysis--as a discipline deeply connected within the SE process.             

What Would We Like to Improve Upon? 
Challenges of Traditional Failure Analysis Processes. Processes for system risk and failure 
identification, analysis, and planning are well-known, documented, and frequently supported by 
tools. These include Failure Modes and Effects Analysis—FMEA (Dyadem 2002, 2003; ISO/IEC 
2006, 2007; US DoD 1980), Fault Tree Analysis—FTA (Hyatt 2003), Reliability Centered 
Maintenance Planning—RCM (Moubray 1997), Process Hazards Analysis--PHA (Hyatt 2003), 
and Hazards and Operability Analysis—HAZOP (Hyatt 2003). Those who perform these 
sometimes voice challenges of these processes, such as the following: 

(1) Frequently labor intensive or tedious, adding cost and sometimes discouraging to the 
energy of those who face the next session; 

(2) May overlook certain problems, or feel somewhat arbitrary in identifying issues; 

(3) Typically outcome is very sensitive to the skills and background of the performing team; 

(4)  May not feel systematic in fully identifying the risks of system failure. 

These lead us to ask: How can processes for failure identification and analysis be made to feel 
more systematic and less arbitrary and exhausting? How do we gain assurance we have found all 
the important failure modes and effects for a system? These and other challenges of traditional 
systems engineering approaches are being addressed through the use of Model-Based Systems 
Engineering (MBSE). 



  

Assumed MBSE Background We’ll Need  
The Emergence of Model-Based Methods. Model-based methods supplement the use of natural 
language prose in traditional engineering documents with the use of “models” which are explicit 
data structures (typically relational tables and formal diagrams). The structure of these models can 
be exploited to create analyses and checks that would be much more difficult and subjective to 
perform using purely prose-based methods. When applied well, they can also more effectively 
convey shared meaning to human readers. There is a growing literature on Model-Based Systems 
Engineering (MBSE) (Estafan 2009; Hybertson 2009; INCOSE 2009; Schindel 2005a). In this 
paper, we will focus on how failure analysis can be more deeply integrated as a part of such MBSE 
models. 

Base MBSE Metamodel. The failure analysis approach this paper describes uses the fact that the 
requirements and high level design of a subject system can be represented in an information 
structure summarized by the Base SE Metamodel of Figure 1: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Summary of Base SE Metamodel 

Among the impacts of this Metamodel is the re-positioning of prose functional Requirements 
Statements, which become a formal part of the model, as input-output relationships describing 
external system “black box” behavior during Interactions with external actors—a kind of “prose 
transfer function”. This is important to the results discussed in this paper, and is described and 
illustrated in (Schindel 2005a).  
The failure analysis approach this paper describes also uses the fact that the (modeled) Features

The balance of this paper assumes the availability of a systems requirements and design model that 
is based on the above metamodel. When we build on the foundation of the MBSE Metamodel, 
some surprising, powerful, and unifying simplifications begin to appear.  

 for 
a system summarize, in stakeholder language, (all of) the behaviors of the system that will be 
valued by (all of) the system’s stakeholders.  

 



 

  

Model-Based Failure Analysis: Unifying Concepts  
Features, Failures, and their Impacts.  Let us assume that we have a modeled set of product 
requirements, based on the above metamodel. Because we have available all modeled system 
Features satisfying all system stakeholders, it follows that a failure

Each Feature is used to generate one or more Failure Impacts. , summarizing the impact of not 
delivering (at least some aspect of) the Feature’s promise to the stakeholder. For example:     

 is then synonymous with not 
delivering what a Feature promised. Because they are stakeholder ideas, modeled Features are 
typically not very technical in their descriptions, but in fact summarize everything that a system 
should deliver to its stakeholders. (This may include stakeholder-quantified feature attributes.)  

• Feature = “The system delivers medication on a dose accurate basis.” 

• Stakeholder impacts of not delivering Feature = “Illness”, “Disability”, “Death”, etc.  

• Severity of impacts: 3, 4, 5 

As illustrated above, each impact can also have a pre-populated severity of associated with it, 
describing the stakeholder-rated severity of such an impact ever occurring. Notice that this has 
been done so far without reference to the physical design of the system. 

To cover all the Stakeholders, Features may include issues important not only to system end users, 
but also to those who manufacture, distribute, sell, or support the system, as well as shareholders in 
the profit-making enterprise, etc. We may or may not be interested in Failure Impacts on all these 
stakeholders, and are offered the opportunity to explicitly decide. If a failure analysis is to be 
limited to certain stakeholder and feature subsets, such as medical harms to patients, then the only 
features that need to be considered are those that have those impacts on patients.  

Surprise Number 1.  Our first “surprise” is that the only Effects (the E in FMEA) that a Failure 
can have are non-delivery of Feature promises

Requirements, Interactions, and Counter-Requirements.  This approach also uses the fact that 
the (model-based) functional 

—and these can be pre-modeled with each of the 
Features, as Failure Impacts. If we claim to know our stakeholders and their modeled Features, we 
can “pre-populate” the only possible Effects of Failures. If we think we have discovered an Effect 
that is not implied by an existing modeled Feature, we need to inform the Feature Modeler that 
they may have missed an important product Feature. If we don’t have a model of our system’s 
stakeholders and their modeled Features, the extended team has important homework to do before 
we can perform an FMEA or similar analysis. (This was always true in any method, but is made 
more transparently obvious by the model-based approach.)  

requirements statements for a system describe its required behavior, 
occurring during the interactions the subject system has with external systems (actors). Any failure 
of that system will include at least one instance of an interaction behavior by the system with at 
least one external system, having negative stakeholder consequence. At a black box level, these are 
the functional failures identified in FMEA, RCM, or other failure analyses. This method builds 
failure analysis on top of the system’s requirements model, suggesting that the failure analysis 
cannot be completed without an agreed set of functional requirements, in model form. (Note that 
model-based requirements of the type described here are a technical characterization of relevant 
aspects of the system’s black box behavior. This degree of “completeness” is characteristic of 
model-based requirements of the type discussed here. This “completeness” will now come in 
handy, for generating FMEA Functional Failures. This also makes it even more obvious why the 



  

system requirements as viewed by the requirements analyst, designer, and failure analysis review 
team should all be the same modeled requirements—and that each team can improve upon 
the shared

Each system requirement statement is used to generate at least one counter-requirement statement. 
For example: 

 model work of the others.) 

• Requirement = “The system shall deliver at least 3 hours of operation on one battery.”      

• Counter-requirement = “The system does not deliver at least 3 hours of operation on one 
battery.”  

A complete set of counter-requirements can be rapidly generated in a simple way from the 
system’s requirements, by “reversing” them.  

Surprise Number 2. All FMEA functional failures can be rapidly generated as Counter - 
Requirements, from MBSE modeled functional requirements.   

Some requirements may generate more than one counter-requirement. For example: 

• Requirement = “The system shall maintain temperature in the range 70-74 degrees.”      

• Counter-requirement 1 = “The system allows temperature to exceed 74 degrees.”  

• Counter-requirement 2 = “The system allows temperature to fall below 70 degrees.”  

Furthermore, because the Requirements were already associated with the Features of a system 
model, the Counter-Requirements can be easily associated with Impacts, which are the (feature 
non-delivery) “effects” of an FMEA analysis, without “from scratch” analysis. 

Surprise Number 3: All associations (match-ups) of FMEA Functional Failures with FMEA 
Effects can be generated from the association of the violated Requirements with its associated 
Stakeholder Feature.   
Modes (States): Failure Modes.  The MBSE requirements approach referenced also uses the fact 
that the interactions a system has with external systems can be thought of as associated with the 
system being in a certain state, or mode

In addition, a system can sometimes enter an “abnormal” mode, in which its behavior is 
undesirable—such as “Overheated”.  Sometimes abnormal states are called failure modes when 
the associated behavior is bad enough.    

. The behavior (external interaction) of a system is different 
if it is “Off”, “On”, “Idling”, etc. Each of these are states (or modes) of that system’s behavior. 
These are all “normal” modes, in the sense that while they occur in different circumstances, the 
associated system behavior is considered normal (that is, what is described by requirements).  

Interaction-State Chains; Causes. This approach further uses the fact that the Design 
Components, States, Interactions, Requirements, and Features information of the Figure 1 
Metamodel can be unfolded (split) across normal and abnormal behavior, and across “causality 
chain” sequences. The resulting models add further to the information used to populate a Failure 
Analysis (e.g., FMEA table).  

In all these cases, the current mode (state) of the system can be viewed as the immediate reason 
that it is behaving a particular way. That behavior is characterized by the interactions the system is 
currently able to perform (the interactions associated with that state).   



 

  

If we then ask how the system came to be in its current state, we find that a previous interaction of 
some sort will have “placed it in the current state”. This leads to the idea that there are “causality 
chains” that take the form of sequences of alternating interaction, state, interaction, state, etc. For 
example: 

• Interaction:  Turn On the System 

• State:   System On 

• Interaction:  Request System Menu 

• State:   Displaying Menu 

This same idea works for abnormal states:  

• Interaction:  Insert Battery 

• State:   Battery Inserted Backwards 

• Interaction:  Turn On System 

• State:   System Inoperative 

In all these cases, the idea of cause can be pursued by looking to earlier parts of the chain. We can 
say that a later part of the chain is “caused” by the states and interactions of an earlier part of the 
chain.  

Pre-Populating A Library of Failure Modes. The Counter-Requirements and Feature Failure 
Impacts described earlier above depend only upon the structure of requirements and stakeholder 
expectations for a system—they are independent of its design. In contrast, the Failure Modes of a 
system depend upon its design—specifically, upon its physical Design Components. Each such 
Design Component has an expected behavior, based upon the logical roles and requirements 
allocated to it, and a set of Failure Modes, which are abnormal states that physical component type 
may enter in which it will display behavior violating its allocated logical roles and requirements.    

Since Counter Requirements and Feature Failure Impacts can be pre-populated independent of 
design, is it possible that Failure Modes can be pre-populated independent of system 
requirements? This turns out to be connected to knowing what roles and (decomposed, or white 
box) requirements will be allocated to the physical part. For most physical parts playing typical or 
“standard” roles, it turns out that we have such a prediction available even if the (parent black box) 
requirements of the total system are not currently visible. For example: 

• Design Component = Madsen Model P53 Centrifugal Pump 

• Normal Allocated Roles = Liquid Transport, Liquid Containment, Powered Safe Operation 

• Failure Modes = Bearing Failure, Leakage Seal Failure, Short to Case   

• Probabilities of Occurrence = 0.002, 0.00045, 0.000001 (per 10,000 service hours) 

Probability of Occurrence. As illustrated above, for each pre-populated failure mode, we can 
also include probability of occurrence parametric information that characterizes the likelihood of 
the physical component entering the failure mode from the interactions it will experience in its 
typically assigned roles. This will later help to drive the failure risk scoring process in the usual 
manner.   



  

Combinatorial Matching Up of Requirements and Design Data. The Functional Failures 
(counter requirements) and Failure Effects (feature failure impact) data can be pre-populated 
independent of the system’s internal design, and the Failure Mode data for standard component 
roles can be pre-populated independent of the system’s external requirements. So, when both the 
requirements and a candidate design have become known, how do these two halves of the failure 
analysis model get connected to each other? This turns out to be a combinatorial algorithm.   

First, it turns out that the counter-requirements (functional failures) obtained by reversing the 
requirements statements may describe some hypothetical external behaviors that are never (or with 
probability too small to matter) caused by component failure modes. This will cause some 
pre-populated functional failures to be dropped. For example, a requirement that a product weigh 
less than one pound has a counter-requirement that it weighs more than one pound. It may be 
determined that there is no component failure mode that impacts weight, so that this functional 
failure is dropped from the list. (Notice that even this failure mode could happen for some 
products—for example, a hazard protection suit that becomes wet weighs more.)  

Second, it turns out that some failure modes of a physical component have no consequence on the 
product’s required behavior, because the failure mode describes a role not allocated to the part in 
this particular product design. For example, an integrated circuit may have built-in circuitry for 
performing certain functions which are not used by a certain product’s design, even though other 
portions of that chip are used.  

The connection of the requirements half of the failure analysis to the design half of the failure 
analysis is made by matching up “mating” pairs, and discarding what is left as not applicable (after 
checking for missed cases this approach also helps us find—another benefit). The matching up is 
accomplished through the matching of counter-requirements with failure modes. Each failure 
mode causes some abnormal behavior. All abnormal behavior is described by counter 
requirements. When we find a counter-requirement belonging to a failure impact is equal to a 
counter-requirement for a failure mode, that pair is associated together, completing two major 
sections of a row in a failure analysis table. (Some failure modes may connect to multiple counter 
requirements and some counter requirements may connect to multiple failure modes.) 

This process may use two levels of requirements, in the form of system black box requirements 
and their decomposed white box requirements (allocated to physical parts), in which case 
counter-requirements may be developed at both levels. A simpler alternate method is to use only 
one level of counter-requirements, with the component failure modes associated directly with the 
resulting abnormal behavior at the black box level—in which case the association of failure modes 
with abnormal behavior is dependent upon knowing the system level design. Likewise, the states 
discussed above may be at two levels, representing states (and failure modes) of system 
components and the whole system, or simplified to states of the whole system, in which case the 
failure modes are modes of the whole system and again dependent upon its design.  

The discussion above assumes failure modes originate in internal system components, typical of 
analyses such as a Design FMEA (D-FMEA). Also discussed later below are failure modes of 
external people or processes that impact upon the subject system, as seen in an Application FMEA 
(A-FMEA) or a Process FMEA (P-FMEA). The counter-requirements matching-up approach is 
substantially the same in these cases.    



 

  

A Unifying MBSE Viewpoint for Risk Analysis Information  
Order of Occurrence versus Order of Analysis; Checking; FMEA versus Fault Tree.  FMEA 
analysis typically reasons from component failure modes to system level counter-requirements, to 
the stakeholder impacts (failure effects, such as user injury). This traditional analysis thus occurs 
in the sequence of cause-to-effect, and the methodology described here supports that order of 
reasoning. In a traditional FMEA table, it proceeds more or less from left to right. This traditional 
order of reasoning is why FMEA is said to work for analysis of single failure modes but not 
multiple simultaneous failure modes. 

It can be seen that this methodology also supports the generation of Fault Tree analyses. Whereas 
an FMEA analysis traditionally begins from each possible component level failure mode and 
reasons to its effect (typically a one-to-one process generating a row of an FMEA table), a Fault 
Tree analysis traditionally begins with each effect and reasons backwards to identify each possible 
component failure mode that might cause it (typically a one-to-many process generating a 
many-branched fault tree under a single effect). Each path of the fault tree is roughly equivalent to 
a row of the FMEA table. The information models described here describe both approaches, 
differing only by the order in which the data model is filled in during the analysis process.  

The use of MBSE failure analysis allows reasoning in other directions—because it is really about 
an underlying information model, not an order of reasoning, we can populate that information 
model in different orders. These include backwards reasoning from failure effect to cause (as in a 
Fault Tree Analysis) and middle-out reasoning, from system counter requirement to both their 
upstream causes and downstream effects. This is of major value, as it facilitates completeness 
checking of the resulting failure analysis table. We can independently check the effects against a 
complete library of all possible feature-based impacts. We can independently check the middle 
(the system counter-requirements) against a complete library of all possibilities, based on the listed 
system requirements. This improves completeness and coherence of the FMEA or other analysis, 
including its inspectability. 

Faults versus Failures; Fault Tolerant Systems; Fail Safe Aspects. In the specific language 
(Anderson and Lee 1981) of fault tolerant systems (which is not always used the same in failure 
analysis procedures) faults and failures are undesirable states or behaviors, but don’t mean the 
same thing. A fault is an abnormal component or subsystem condition (state), which may or may 
not result in a system level failure. Remembering from above that failures are not delivering 
agreed upon stakeholder features, we can say that a fault tolerant system

For example, aircraft hydraulic systems typically employ redundancy, so that they can deliver safe 
flight services while tolerating a fault in a hydraulic line.  

 is a system that does not 
fail (continues to deliver features) in spite of component or subsystem faults. (That is, it tolerates 
faults in its own components, while continuing to deliver external features.) 

In the language of failure mode analysis, the term “failure mode” is frequently used to describe an 
abnormal state of a component or subsystem, even if the overall system was designed to keep 
delivering all its external services in the presence of that component failure mode. This is not so 
inconsistent if you consider that the subsystem or component is not delivering its “external” 
services, but it can be a little confusing if you don’t expect the term or keep track of system levels.    

Sometimes a system internal fault can present risk of a serious (e.g., life or property threatening) 
failure behavior by the subject system. In those cases, mitigations are sometimes planned such 



  

that, although the system may fail to deliver all of its promised features, it protects from presenting 
a more serious failure. That is, it still fails, but “fails safely”. This is called a fail safe system.   

Subsystem Causing Failure: D-FMEA. In a system, an abnormal state of a component may 
cause a system level failure.  We can reason forward from the component state to the system 
failure it causes, or backward from the component state to its cause. For example, the following 
failure mode is “caused” by the interaction shown: 

• (Interaction) Cause of Failure Mode:   Normal Wear  

• Component Failure Mode State:   Gear Train Binding/Lash-Up 

Remembering the idea of interaction-state chains, we can see that many such failure mode states 
can be said to be caused by a previous interaction, whether it is a normal use interaction or some 
extraordinary damaging interaction. If the causal interactions are “normal” behavior by the 
external systems performing them, then we could say that the failure mode is effectively inherent 
to the design of the subject system in its normal use. Analyzing failures of this kind is typically the 
subject of D-FMEA (Design Failure Mode Effects Analysis) work.  Sometimes this leads to a 
different design to reduce the likelihood of the failure mode occurring, or in other cases to other 
controls (mitigations) intended to reduce the impact of the failure mode when it occurs.  

In all those cases, it could be said that the role played by the subject system in normal interactions 
eventually leads to the failure mode of the system’s component. However, it is alternatively 
possible that the system design is not the cause, but rather that the external systems are behaving 
abnormally. This case is covered in the next two sections.  

Peer System Causing Failure: A-FMEA.  External systems interacting with the subject system 
are sometimes called “peer” systems, or “actors”. Unlike the subsystems or components discussed 
above, they are external to the subject system.  

In an A-FMEA (Application Failure Mode Effects Analysis), attention is focused on the effect of 
abnormal behavior by external systems that are typically human “users” of the subject system. It 
could be said that the original failure modes in this case are states of the external system. For 
example: 

1 Failure Mode (Pilot State):  Attention Overloaded 
2 Interaction:     Select Target (assume wrong value entered) 
3 State (of Weapons System):   Awaiting Weapon Release Confirmation 
4 Interaction:     Confirm Weapon Release 
5 State:      Delivering Weapon  

As illustrated by the above example, we can have a failure to deliver overall system features even 
though the subject system meets all of the requirements assigned to it. However, it is also possible 
for an external system to drive the subject system into its own abnormal (e.g., damaged) state, after 
which it no longer meets requirements assigned to it. For example:  

1 Cause of Failure (Interaction):  Poor User Training 
2 Resulting Failure Mode (State):  User Unaware 
3 Interaction:     User Closes Valve (Over-Tightening) 
4 Resulting System Component State:  Valve Seal Failure 



 

  

Both of these cases are of interest in an A-FMEA. The second case looks a lot like a D-FMEA after 
the point of driving the subject system into a bad state.  

Notice that “users” are not the only external systems whose failure modes can damage the subject 
system’s state. Other faulty systems in the Application Domain may also have to be considered.  

When the external actor that is in an abnormal state is a human being, the MBSE model is in the 
territory of modeling human behavior. This is further discussed in (Schindel 2006).  

Peer System Causing Failure: P-FMEA.  One special external system traditionally analyzed is 
the subject system’s manufacturing system. This is the subject of a P-FMEA

1. (Interaction) Cause of Failure Mode:   Glue Build-Up on Nozzle During Use 

 (Process Failure 
Mode Effects Analysis). The nature of a manufacturing system is to create the subject system, so it 
may be found that all the P-FMEA failures of interest result in bad product system states. For 
example: 

2. Component Failure Mode State:   Nozzle Obstructed 

3. (Interaction)       Not enough glue applied  

4. Subject System State     Part Loose 

There can also be manufacturing process failures that fail in the sense of not delivering on all the 
other manufacturing process systems features, as when manufacturing yield, manufacturing 
operating cost, or manufacturing safety are impacted by manufacturing faults. Depending on the 
intended scope of the P-FMEA, these may or may not be of interest to include and analyze.  

Other major processes, such as the commercial Distribution Process, can have faults that create 
bad states in the subject system. For example: 

1. (Interaction) Cause of Failure Mode:   Transport Packaged Product 

2. Component Failure Mode State:   Package Seal Fractured 

3. (Interaction)       Tolerate Exposure to Contaminants  

4. Component Failure Mode State:   Food Product Contaminated 

Depending on the intended scope of the P-FMEA, these other processes may also be considered.  

D-FMEA, A-FMEA, P-FMEA, and Unified FMEA.  Although it may be desirable to separate 
the D-FMEA, P-FMEA, and A-FMEA “reports” for attention by different groups, and to generate 
and review them using different subject matter experts, it is also desirable to generate them from a 
consistent underlying information model.  For example, all three FMEA types depend on the same 
system level counter-requirements and feature impacts. If this consistency is used, then it is easier 
to understand the different FMEAs in a consistent way, and to judge their accuracy and 
completeness.  

While there may be reasons to differently format or label the tabular “reports” that are generated 
for these different types of failure analysis, the approach described here at least intends to generate 
them from a common base of underlying information, and to minimize differences in labeling 
except where it improves the outcome.   



  

Further Leveraging the Results 
Patterns As Re-usable Models. This paper describes the use of Model-Based Systems 
Engineering information in failure analysis, to improve results. If an enterprise needs to perform 
failure analysis on different products or systems that are somewhat related but vary in their specific 
configuration (e.g., product lines), then a more powerful extension is also available. This is 
called Pattern-Based Systems Engineering

 

. The basic idea is to make the models configurable and 
re-usable, so that they can rapidly be re-used in future projects, and can also be used to accumulate 
learning. This is a bigger idea than accumulating standard lists of failure modes.  

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: Patterns Are Re-Usable, Configurable Models 

 

This approach to Systems Engineering Patterns treats a pattern as a configurable, re-usable model 
of requirements and design, described further in (Schindel 2005b; Schindel and Smith 2002).  

Enhanced Use of FMEA and Risk Analysis Tools.  A number of basic and more advanced 
commercial automated tools are available for use in generating FMEA and other forms of failure 
or risk analysis. In their most basic use, the analyst manually enters data into relatively fixed forms 
and generates resulting reports. In their more advanced form, these tools support customization or 
configuration of reports, data entry, and some aspects of the underlying information models. Some 
also support accumulation and use of re-usable standard categories or other data, and some support 
integration with other engineering tools, such as requirements management tools.  

The model-based concepts, methodology, and procedures described in this document can be used 
with a number of these commercial tools, improving their value. In general, the more powerful and 
flexible the tool, the more aspects of this methodology may be used.   

The simplest, but least beneficial, way to initially do this is to configure the tables and reports of a 
tool to accept manual entry of data of the type described in this document.  

 



 

  

A more sophisticated approach allows re-use of data from a pattern of requirements, design, and 
failures (patterns).  Since patterns are relational models, this is more powerful than simply having 
lists of standard pull-down items.  

This methodology also enhances the ability to integrate an FMEA or failure analysis tool with a 
Requirements Management tool, by using Counter-Requirements that are associated with the 
system level Requirements. This is more powerful than simply having links between data items in 
two tools.  In fact, if a requirements and design model is available in MBSE form, then tool-based 
combinatorial algorithms can be used to automatically generate an initial draft FMEA table. Of 
course, this does not replace human analysis, but does reduce the drudgery of initial generation, 
freeing the analyst to do deeper thinking and analysis of the failure data.  

 Results to Date 
We have seen these methods help both experienced FMEA analysts as well as newcomers to more 
productively generate well-organized failure analyses, in applications including manufacturing 
and health care. The approach is not at odds with traditional methods, in producing substantially 
the same form of deliverable—but provides a stronger basis for understanding the meaning and 
degree of coverage that deliverable represents, while more tightly integrating failure analysis with 
requirements and design data.  

Conclusions 
1. Failure analysis data and processes can be more deeply integrated with system 

requirements data and processes, using model-based methods, with benefits to depth of 
shared team understanding, productivity, process cohesion, coverage, and lower level of 
entry expertise for participants.  

2. A subset of FMEA analysis can occur in advance of, or independent of, system design, 
using the structure of model-based stakeholder features and functional requirements to 
pre-populate the space of potential functional failures and their prioritized effects.  

3. Another major subset of failure analysis data can be pre-populated that is requirements 
independent, in the form of libraries of physical components (or technologies), their 
typically assigned roles, and their failure modes and associated abnormal behaviors. 

4. Modeled system design introduces failure mechanisms for D-FMEA, while human, 
process, and equipment actors introduce failure sources for A-FMEA and P-FMEA, all of 
which can be better integrated.  

5. FMEA, Fault Tree, and other forms of analysis can be viewed as different views of the 
same underlying modeled data, for different purposes and emphases.   

6. Patterns, when formed as re-usable, configurable models of system requirements and 
design, can include failure risk analysis, whose coverage and quality can be improved from 
project to project, in support of a learning organization.  

7. Automated tools for failure analysis, requirements management, design, simulation, and 
other aspects of the systems engineering process can be integrated more deeply than simply 
linking their data records, by configuring their databases to take advantages of the 
integrated underlying MBSE/PBSE metamodel.     
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